- 监管机构
- 银行
- 租赁
- 其他金融
时间:2021-05-14
在实践中,技术部门和数据管理部门遇到的一大难点是各部门抱怨数据缺失、数据质量问题,并将主要责任和治理工作推给这两个部门,数据治理很难深入,数据治理成本增加,边际收益曲线快速递减。在数据仅作为一般性的统计、分析、监管报表报送的情况下,这种现象实属正常,毕竟业务部门有其各自的业务价值目标和职能分工,当数据的采集、加工、存储和质量控制成本大于其收益时,或者数据治理仅仅是质量管理活动的话,是很难得到各业务部门的真正认同的。唯有当数据给业务带来价值时,数据治理才能上升到战略层面,成为业务部门的自觉行动。因此,应清晰定义数据治理的目标,将数据价值管理而非数据质量管理作为其目标。具体有三点建议:
一是,建立数据价值评价模型。目前,大部分银行都建立了企业的主数据和数据的认责部门,在此基础上,可以再增加价值分析维度,根据数据使用频度、重要性、精准性、安全等级、监管要求等,以及数据在产品创设、客户标签、营销机会、风险技术、作业流程等应用维度进行标识和评估,实行分类管理,确定数据质量、存储、安全、调用等策略,让管理层、数据认责部门、数据管理部门和信息技术部门建立共同的数据价值判断标准,提高对数据治理活动的认识。
二是,建立数据价值分析的流程。信息技术部门和数据管理部门的数据治理工作要前置到业务活动中,分析业务活动中的数据需求,以及业务活动过程中产生的数据,与业务部门共同分析数据的使用价值和采集的必要性,在信息系统建设过程中以最合理的方式实现数据采集、数据质量控制,并最大限度集成和调用内、外部数据,支持营销、客户识别、风险控制等业务活动中的数据需求。让业务部门切实感受到数据的价值,承担起数据提供者的责任。
三是,试点建立数据经营的内部组织。从组织内部看,银行已经拥有了海量的数据,不仅数据的历史长,而且质量高,但是很多业务部门并不知道银行究竟有什么样的“宝藏”,由于用户通常是一次性使用数据,数据质量改进和价值发掘缺乏持续性,无法实现知识积累。经验表明,数据的质量是越用越好,数据的价值是越用越高,前者说的是通过数据的使用才能发现数据的质量问题,从而推动数据问题的追根朔源和改进,后者说的则是数据的特性,数据价值不会因为使用而消失,这恰恰是数据运营部门的专业价值所在;从外部看,外部数据服务逐步兴起,将外部采购的数据管理好,实现外部数据和内部数据的综合管理与应用,共同服务于企业内部的多个用户,也需要有专业管理团队。此外,对于集团性企业的法人之间也存在数据服务的需求,由于涉及到保护敏感数据安全以及数据基础设施安全的监管要求,必须对数据进行加工处理,这些职责和专业技能是技术部门或信息管理部门所不能完全覆盖的,需要有一个综合性的专业团队运营。需要说明的是,数据运营专业团队与业务条线的数据分析功能,两者不是替代关系,而是互补关系,数据运营团队的工作是为了更好地支持业务条线的数据分析和应用。
讲到数据治理,我们经常提到的一个词就是血缘分析,那么什么是血缘分析呢?一句话来说血缘分析是保证数据融合(聚合)的一个手段,通过血缘分析实现数据融合处理的可追溯。有时被概念瞎蒙了,不知道到底如何追溯,落不了地。本人接触的数据治理项目还主要是将各个来源的数据进行整理融合,形成人地事物组织几个业务大类数据。
金融行业的数据资产管理仍存在很多问题。具体来看,金融数据质量不高,主要体现为数据缺失、数据重复、数据错误和数据格式不统一等多个方面。针对这个问题,本文着重解决方法。
长期以来,我国房地产开发企业常见的经营模式是项目开发后直接出售获取利润,但随着近年一二线城市增量项目逐步收缩,房地产市场开始向“存量时代”转变。而住房租赁作为房地产行业中相对于出售来讲更为灵活的一种流通方式,有助于存量房地产资源的高效利用,也为房地产市场的参与者提供了转型升级的新思路。