- 监管机构
- 银行
- 租赁
- 其他金融
时间:2021-05-14
数据价值管理的治理目标并不否定数据质量和数据标准管理活动,两者始终是基础。之所以强调这两项工作,是为了澄清实际工作中遇到的误区,这种观点认为:解决信息系统的数据问题,应采用技术手段或采购外部大数据,业务难有作为。
就数据质量而言,业务对数据的依赖性越大,对质量的要求越高,数据质量就是产品质量、服务质量、意味着风险。在数字化时代,业务活动就是进行数据采集、生成和数据质量控制的过程,显示的就是业务活动的自身的过程和质量,并将此固化在信息系统中,这个过程始终是不可或缺的。同样运用技术手段建立数据质量监控机制,也是不可或缺的,只是随着数据采集和处理的技术在不断地进步,如:传感器、图像处理、RPA等,很大程度上减轻了人工的输入,甚至原本不可能由人工采集的数据,进而极大地提高了数据准确率,降低了数据采集和处理成本。
数据标准是数据的业务含义、分类分级、格式及转换,是数据治理最基础的工作,数据标准化程度越高,系统自动化处理能力越强,信息共享度越强,数据成本越低。数据标准的难度在于管理,管理的难度在于对数据的业务定义。银行的数据管理部门或数据运营部门应更加努力地承担起这个基本职能,在企业内部推动数据标准的制定,信息技术部门则要坚决地落实贯彻数据标准,从数据的源头抓起,在源系统中贯标。
将数据基础设施纳入战略投资管理
数据基础设施的投资历来是昂贵的,很难衡量价值,在短期内难见到收益,也是成本最难分摊出去的IT投资。但是数据基础环境的建设又是如此重要,非企业或集团范围内的总体规划、超前投入无以建成企业或集团级别的数据平台、形成可产生价值和共享的数据规模。10多年前,数据仓库投资以数据驱动还是应用驱动的争论,仿佛历历在目。在当时情况下确实值得讨论:以数据驱动的建设路径成功者不多,以应用驱动的建设方式有着见效快,易于被业务部门接受的优点,但也导致最终数据分散难以整合和共享,以及历史数据保存不充分的问题,企业确实应根据各自的条件和环境选择合适的建设方式。进入数字化时代,企业级的数据基础设施战略投资,顶层设计、集中建设、集中处理、分层应用则是不二的选择。
据互联网金融协会一份调研显示,在50多家调研银行中,高达98%已在多个场景中广泛应用大数据技术。这背后,是因为银行业天然离大数据最近:积累了海量数据、数据历史长、质量高、可挖掘空间大,银行经营的所有关键环节都离不开数据。
意味着在数字经济、数字金融、金融科技以及金融数字化、智能化的高速发展阶段,如何建设有效的数据治理架构具有非常重要的意义,同时也具有非常大的紧迫性。建设更加有效的数据治理,对于推动金融业实现高质量发展,促进金融业安全稳定,具有非常重要的战略意义。
人们在通货膨胀预期基础上的行为,包括他们的支出行为的变化需要做一些细致、深入的研究,以便对货币政策与通货膨胀、通货膨胀预期及居民的支出行为的关系,有更深刻的了解和认识。